Table I. Curie temperature T_c , $\Gamma \equiv \partial \ln T_c / \partial \ln V$, and \overline{I}_{max} , as calculated from Eq. (15) for $\partial \ln I_b / \partial \ln V = 0$, for various solid solutions of MnAs $s_x^{Sb}_{1-x}$ in the second-order region.

x(at.% As)	т _с	Γ	Ī _{max}
0.00	572	2.38	1.206
0.25	458	2.97	1.180
0.50	375	3.63	1.157
0.75	292	5.18	1.122
0.80	247	6.20	1.106

-24-

FIGURE CAPTIONS

- Fig. 1 Magnetic transition temperatures of $MnAs_xSb_{1-x}$ solid solutions. (O, • after Sirota and Vasilev^h and x after Goodenough <u>et al</u>⁵.)
- Fig. 2 A typical self-inductance versus temperature plot for the x = 0.9 solid solution.
- Fig. 3 Concentration dependence of the FM to PM transition temperature (• present study, after Sirota and Vasilev⁴).
- Fig. 4 Concentration dependence of the initial pressure derivative of the FM to PM transition temperature.
- Fig. 5 Temperature versus pressure magnetic phase diagram for MnAs and MnAs_{0.9}Sb_{0.1}.
- Fig. 6 A comparison of $\partial T_c/\partial P$ versus T_c plots for various alloy systems. (O MnAs_Sb_1-x, \blacktriangle Fe-Pt, \blacksquare Fe-Pd, and \blacksquare Fe-Ni).
- Fig. 7 A comparison of the calculated and experimental dependence of T_c on bandwidth (---- calculated, \bullet experimental).